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Abstract. We study the percolation rransitian in a longe-range camlated system: a self-affine 
surface. For all relevant physical cases (i.e. positive roughness exponents), it is found lhat 
the onset of percolation is governed by the largest wavelength of !he height distribution. and 
thus self-averaging breaks down. Self-averaging is recovered for negative roughness exponents 
(i.e. power-law decay of the height pair correlation function) and. in this case, the critical 
exponents that characterize the transition are explicitly dependent on the roughness exponent 
above a threshold value. &low this threshold, the spatial correlations are no longer relevant 
The problem is analytically investigated for a hierarchical network and by means of numerical 
simulations in two dimensions. Finally, we discuss the application of those propedes ta mercury 
porosimetry in cracks. 

Labratoire de Physique et M h i q u e  des Milieux H6t&og&nes, Ecole Sufieure de 

1. Introduction 

While percolation theory has been extensively studied in the past decade [I], little attention 
has been paid to the occurrence of long-range spatial correlations [2,3]. However, in 
natural systems spatial correlations are often observed and direct transposition of classical 
percolation theory can be misleading. Short-range correlations are expected to make the 
computation or the measurement of the percolation threshold explicitly dependent on the 
microstructure of the medium, but the critical behaviour is unaffected (i.e. still described 
by the usual critical exponents obtained in the absence of correlation). This illustrates 
the power of the concept of ‘universality’ and justifies the effort expended in the past on 
the determination of those exponents. For long-range correlations that picture is drasticaly 
changed as even the critical exponents may become different. 

We shall address the question of the universality of the percolation transition in the 
presence of long-range correlations, with a special emphasis on the case of self-affine 
geometry. Self-affine geometry, which characterizes quite a number of different natural 
surfaces, exhibits such long-range correlations. Examples of  the occurrence of such a 
property may be found in growth models 141, such as the boundary of Eden clusters or 
ballistic deposition models, landscape and erosion surfaces [5] or fracture surfaces [6- 
IO]. Only recently has ‘the importance of such long-range correlations in connection with 
percolation motivated some work [2,3] 

We proceed along the same lines, using different tools and techniques to generate 
correlated surfaces, and we extend the previous work to the case of self-affine surfaces 
which has never been addressed ib our knowledge. We consider the case of a hierarchical 
lattice, ‘which allows us to reach analytical conclusions. Then we use those results as a 
paradigm to numerically analyse the Euclidean &e. 

0305-4470193/22611St19$07.S0 0 1993 IOP Publishing Ltd 61 15 
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The paper is organized as follow: first, a self-affine surface is constructed, both for 
Euclidean and hierarchical lattices, and the percolation transition is defined in section 2. 
In section 3 the influence of spatial correlations on the percolation transition is explicitly 
presented for the hierarchical lattice. The same problem is solved numerically in section 4 
for the Euclidean case and the results are shown to be consistent with the hierarchical case. 
Finally, in section 5, the consequences of those results to mercury porosimetry applied to 
fractures are considered. 

2. Self-affine surface construction 

2.1. Euclidean lattice 

A self-affine object is statistically invariant under an affine transformation: xi + Aixi for 
i = 1,. . , , d where d is the space dimension. Requiring that these vansformations can be 
combined implies a group structure. As a consequence, each Ai has to be an homogeneous 
function of one of them, say AI. The homogeneity exponents are called Ti: Ai = AT. The 
set of homogeneity indices, (Ti], characterizes the scaling properties of the self-affine object. 
We only consider here the case of surfaces with a mean plane parallel to ( X I ,  . . . , xd-1) 

along which the surface is isotropic. Therefore, Ji = 1 for i = 1, . . . , d - 1. The only 
non-trivial exponent is thus relative to the scaling in the xd direction-the 'height' of the 
surface-Jd, simply refened to as 5 in the following. 

In order to illustrate the type of correlations introduced by a self-affine geometry we 
sketch the construction, introduced by Voss [ I l l  (and presented in [4]), of a simple one- 
dimensional self-affine height profile H ( x ) .  

The elementary process consists of knowing the values of H at both ends of a root 
segment, i and j ,  computing its value at the centre k as the average (Hi + H,) /2  plus 
a fluctuation, h. At each generation m, the fluctuation h, is picked tiom a statistical 
distribution f ( h )  with zero mean. The magnitude of the fluctuation is scaled according to 
the length of the parent segment raised to the power (, < being the above-defined roughness 
exponent. The initial segment is supposed to be of length L = 1. We may choose f to 
be a Gaussian disvibution although this is unessential. Let Hi be the height of a profile at 
point i. At the mth generation, by construction, 2+' new points will be generated and 

where 1 = 2-" and i = I ,  31, . . . , (2m - 1)l. The height at a given point can finally be 
expressed, with this recursive construction, as the average of the two heights at the ends 
of the entire profile weighted by the distance to these points, plus a sum of fluctuations 
with different weights that depends on the precise location of each point. For positive J 
the amplitude of the fluctuations decreases exponentially with the generation. Therefore, 
after a few generations, thc overall shape of the profile is roughly determined and the 
addition of the last points makes minor modifications to the profile, since the construction 
of the last heights is almost reduced to a linear interpolation between existing points. The 
statistical distribution of the heights H is then controlled by the fluctuation hl of the first 
generation. For negative 5 the final generations become dominant compared with the first 
and the 'memory effect' of the first generations is reduced. Figure l(a) shows, for each 
point of the first generations, the location of the two parents' endpoints. 

The two-dimensional construction follows the same basic iterative process. The mkn 
difference is in the dependence on the boundary conditions which are supposed to be periodic 
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1 4 8 12 . 16 20 24 28 32 

(a) Construction of a 1D euclidean self-affine profile 

1 4 8 12 ~ 16 20 24 28 32 
0 ...................... .................................................... 

.............................. ............................... 

.............. 

( b )  Construction of a ID hiemhical self-affine profile, 

Figure 1. Illustration of the construction of the self-affme profile in one dimension using two 
techniques presented in the text. (a) The first technique is the one which is used to generate the 
surfaces in two dimensions on a Euclidean lattiCe. (b) The second technique which is close to 
the previous one, albeit simpler, is tailored to the hierarchical lattice and is used in this context 
to reach an exact solution with this topology. 

in both directions. At each step the height of the surface at the centre i of a square, with 
an initial height Hj at each of the vertices j ,  is computed as the average of the four vertex 
heights to which is added alrandom fluctuation, weighted.6y the length of the half diagonal 
raised to the power 5 .  The initial state is a periodic square lattice, of size L, with a 
prescribed uniform height, say H = 0. At the first generation, the height at the centre 
of one square is generated which leads, using the periodicity, to a square lattice of mesh 
size 1/& tilted at 45" from the original one. At the second generatio-g four new points, 
in one periodic cell, are generated and the process is iterated as many times as necessary. 
An example of such a surface is shown in figure 2(a) and a cut through the surface at the 
percolation threshold is displayed in figure 2(b). This~construction has been used for the 
numerical simulations relative to the Euclidean lattice. 

2.2. Hierarchical lattice 

We now present an~altemative  way^ of generating a self-affine profile in one and two 
dimensions, perfectly suited to a hierarchical lattice, although not restricted to it. 

Starting from a line segment with an initial uniform height, an additional height h,  is 
added to each half of th& parent segment. The heights hl are picked up randomly from a 

. 
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Figure 2. Shape of a 'natunl' self-affine surface (< % 0.8): (a) is a 30  plot of the surface 
where the average plane is panllel 10 ( x ;  y ) ;  (b) a cut of the surface at the penolation threshold 
height. Black areas we below the threshold. 

statistical distribution f ( h ) ,  with zero mean, and scaled by the length of the parent segment 
raised to the power 5 .  This procedure is iterated again recursively until the desired length 
has been achieved. Initially (generation 0), the segment is of unit length and zero height. 
At each generation, the segment is divided by two and the number of segments after k 
generations is 2', with a length of 2-'. Each segment can be considered as sites, and 
previous parent segments as 'macro-sites', in the spirit of a renormalization procedure. 
Figure 1(b) shows the construction of such profile and how the correlations develop. The 
simplicity of this tree-like structure allows us to compute the correlations in a straightforward 
manner. The first construction (figure I@)) shows that the tracking of correlations is much 
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more complex in the Euclidean case. 
In two dimensions the construction is similar, using squares instead of line segments. A 

unit square with zero height is first divided in four equal squares to which independent 
additional heights hl, picked from a statistical distribution f ( h )  with zero mean, are 
prescribed. That procedure is iterated and at generation k the additional heights hk are 
scaled by a factor A = 2-e. A general expression for the nth generation, of length 2-" can 
be derived as 

Hi = hi + hhz + h2h3 -+ . . . + A"-'h, (2) 

where A = 2 3 .  
This procedure is very close to, although simpler than, the previous case. It allows the 

computation ofthe correlation pair function of the height distribution. In that hierarchical 
construction, two sites i and j are correlated if they share a common ancestor. A natural 
distance, between the two sites i and j ,  can be defined as d = (Zk - I)Z-n, with k being 
the.number of generations by which the lattice must be coarse grained so that i and j share 
the same parent sitet. 

Let us now compute the correlation between the heights at two sites i and j .  From 
generation 1 to n - k the additional heights are identical for both sites i and j .  For lower 
generations the two sites will belong to different squares and thus the additional heights 
they wih be attributed will be uncorrelated. Thus the sum in (2) can be split in two parts: 

H i = X + Y  H j = X + Z  (3) 

where Y and Z are uncorrelated ana X is the height (as in (3)) truncated at order n - k .  
The correlation between the sites becomes 

(4) C = ( H i H j )  - ( H i ) ( H j )  = (X'} - (X)' 

i.e. equal to the variance of X :  1 +AZ + .~. .+Az("-'+" = (1 - Az(o-k))/(l~- A') Two cases 
can be distinguished 

(i) When 5 is negative, or A 2 1, the correlation between the heights decays with the 
distance d as a power law; 

thus 

C z d q  for n - c o .  

In such a case the reference to a self-affine geometry with a negative roughness exponent is 
rather awkward, since it is simply a power-law decay of the pair correlation function. 
However, it constitutes a natural extension of the following case which is our initial 
motivation for this study.. 

(ii) When 5 is positive, 0r.A < 1, the correlation amounts to 

t We note enparsnnt that this distance has the interesting feature of being an 'ultra-distad. However, we will 
 not use this property in the following. 



6120 J Schmittbuhl et a1 

Or 

C a ( l - d Y )  when n + w .  

This represents the usual case of self-affine surfaces with a roughness exponent equal to 

If the distribution f ( h )  is a Gaussian, then the height distribution g ( H )  is a Gaussian 
since it is a sum of normal variables with various but fixed weights. In the same spirit, it 
is easy to show that for all distributions f ( h )  with a finite second moment, and in the case 
A z 1, g ( H )  will tend toward a Gaussian distribution as n tends to infinity. On the contrary, 
for h 1, the final height distribution will keep the memory of the basic distribution fused 
to construct the profile, and it will not converge to a unique distribution. However, there 
is no need to specify the form of the distribution. We will see that the scaling properties 
of the percolation problem only depend on the parameter h. In the following we will only 
assume that the average of f ( h )  is 0 and the variance is 1. 

Let us also note that depending on the the value of A compared with 1, the width of 
the distribution of local heights will be either controlled by the large-scale roughness (i.e. 
hl in (Z)), and thus independent of n (or of the number of sites) for h smaller than 1, or 
imposed by the smaller length scale (i.e. h, in (2)). In the latter case, the width of the 
distribution of heights will decrease exponentially with the generation of the lattice, as A" 
(or as a power law of the number of sites (Zn)-C). However, in order to compare the results 
for different system sizes, it is physically more relevant to deal with an overall distribution 
whose standard deviation is invariant. Therefore, for A > 1, we propose to rescale all 
heights by a factor A-" so that the distribution of height no longer depends on n. In this 
case, we will introduce /?i = A-"Hi. 

2.3. Percolation transition 

Let us now define what we mean by percolation transition. In general, the percolation 
threshold pc  is defined on a regular infinite lattice as the value of the minimum concentration 
p of sites (or bonds) chosen at randcm and without correlations to form an infinite cluster 
with probability 1. Equivalently one could look for the existence of a continuous path of 
present sites which connects one border to the opposite one, in the thermodynamic limit of 
an infinite system size. A common way of choosing which sites are present or not involves 
attributing to each site a random number H picked from a distribution g and deciding that 
the site is present if H is less than a threshold @ so that 

5 = - I  og(h)/ lo&). 

(7) 

We will resort to the same procedure, but using for H the height of the surface, i.e. 
with the built-in correlations above described. Figure 2(b) shows a typical example of the 
percolation problem for the self-affine surface of figure 2@). 

In order to define the percolation transition it is important to introduce the notion of 
connectedness. On a Euclidean lattice one usually considers that only nearest neighbours 
are connected. On a hierarchical lattice a different choice is made for defining (connected) 
paths. For a onegeneration lattice both lattices are equivalent. A 2 x 2 lattice will percolate 
if at least one of the two columns of two sites have both sites present. Above the first 
generation the percolation criterion is defined recursively: a lattice of generation It can be 
viewed as consisting of four sublattices of generation n - 1. It will percolate if it contains 

. .  
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at least two sublattices in series which themselves percolate. This definition is evidently 
tailored for real space renormalization through the identification of a percolating sublattice 
with a present (macro:)site. The definition of the hierarchical lattice together with the second 
construction (section 2.2) of the self-affine surface (which also fulfils the self-similarity) will 
lead us to an analytic solution of the percolation problem. 

However, the critical exponents that can be computed exactIy on this structure are known 
to be different from those relative to a Euclidean two-dimensional lattice. Nevertheless, the 
relation between critical exponents are expected to be reliable and thus can be transposed 
to the Euclidean lattice. This will allow us to test those predictions on the numerical results 
in the Euclidean case. 

3. Percolation through a hierarchical lattice 

3.1. Percolation formulation 

We will first recall the analysis in the absence of correlation for *e hierarchical lattice. Let 
p be the probability~that a site is present. The probability that a lattice of generation 1 
percolates when no correlation is present can be written as 

(8) 2 2  P = q ( p )  = 1 -(1 - p  ) . 

Therefore in the abse,nce of correlations, the percolation probability is obtained by 
iterating the function (0 on the initial probability of site presence, G(H)  = 1-5 g(x)  dx. 
Moreover, this distribution is never used apart from the first step and thus we can simply 
express the threshold height Hc = G(-')(p,)  using the inverse function of G. 

This constitutes the basis for analysing usual percolation on this hierarchical network. 
Let us recall the most important results: the probability to percolate will converge for an 
infinite system size toward a step (Heavyside) distribution P,(p) = U ( p  - p E ) .  The value 
of pc  is obtained as .the non-trivial fixed point (different from 0 or 1) of (0 (equation (8)), 
and thus satisfies rp(pc) = pc .  A simple calculation leads to 

In the immediate vicinity of this fixed point the function (0 is well behaved and the approach 
toward the fixed point can be obtained using a Taylor expansion of (0 arourid pe .  If we 
introduce the local slope 

we can write ~ ( p )  = pc -+ a ( p  - p , )  + O((p  - p#). The width, U", of the percolation 
probability distribution, P n ( p )  = y(")(p) ,  will asymptotically scale as un cx a-" or, using 
the system size as the number of points, L = 2", as 

U ( L )  o( L-1'" (11) 

where U = log(2)/ log@) 1.63 is. the so-called correlation length exponent. Indeed one 
can interpret such a scaling through the occurrence of a characteristic length scale 5 which 
diverges when the probability of presence p approaches pc as 5 cx Ip - pCI-", 
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Let us now introduce correlations in the height distribution. We consider the second 
contruction of a self-affine surface presented in the previous section. 

From the construction of the surface it is possible to reformulate the procedure in the 
following way: a self-affine surface at generation n can be obtained from four independent 
surfaces at generation (n - 1) rescaled by a factor of two in the plane (XI, x2) as can be 
seen from (2). For each of the four (n - 1) lattices the initial height Hi( is given by 

Hi' = h2 +Ah3 + . . . + An-'h,. (12) 

In order to obtain (2) all heights Hi( should be resczled by a factor A and then each sublattice 
is independently to be translated as a block by a height hl randomly picked from the 
distribution j ( h ) .  Then the four sublattices are pasted together to form a generetion-n 
surface. For a site i which was part of a sublattice with a height H', the new height reads 

Hi = h i  +AH' (13) 

which is similar to (Z), using the expression of H; in (12). 
We can now compute the recurrence on the probability to percolate. Let Pn(@) he 

the probability that a generation-n surface, cut at a height H = 6, contains a percolating 
path from one border to the opposite one. In order to relate P,, to Pn-j, we use the 
previous property. Cutting the generation-n surface at a level 6 is equivalent to cutting 
each generation+ - 1) surface at a level @' with +' = (@ - h) /h .  We now inhoduce the 
probability n,-, (4) which a e s  into account the transformation on @ 

The probability to percolate on the generation-n surface is written now as in the uncorrelated 
case, 

P"(@) = P w " - l ( m  ( 1 3  
as in (S), since the latter equation only describes the peculiar topology of paths on the 
hierarchical lattice. Equations (14) and (15) constitute the recurrence we look for to study 
the scaling properties. 

Equation (14) leads to simple relations between moments of the distributions P,, and 
n.. In particular, the variance of the distributions is important. We call U? the variance of 
P,, and q," that of rIn. Both are related through 

5: = A*u; + 1. (16) 

Let us now distinguish between the cases A smaller or larger than 1. 

3.2. Selj-afi surface A < 1 (( > 0) 

We need to complement (16) by the corresponding relation between on and qn-l derived 
from (15). Unfortunately it is difficult to express such a relation in the general case. 
However, bounds can easily be obtained. Since q is well behaved, one can establish the 
inequalities: 

(A%:-, + l)/b' <U,"-< (Azo.,'-, + 1) (17) 



Percolation through seIf-afine surfaces 6123 

where b is the maximum value of drp(x)/dr = 8 / ( 3 f i ) .  Thus uo is bounded from above and 
below by two convergent series having a finite non-zero limit. The upper series converges 
to U + l/m, while the lower tends to U + l / m .  

In fact the upper bound is expected to give the correct behaviour. If we note that the 
height distribution will tend to have a width proportional to (l-A)-"', it is natural to express 
the scaling of the U compared with the height distribution, or to introduce 5 = (1 - A)''2u. 
If we assume that the upper bound is valid, we obtain 5 cx in the neighbourhood 
of A = 1 or < = 0. The other bound gives a quicker vanishing of 5 as A approaches 1. 

Those bounds are sufficient to insure that the distribution will not tend toward a step 
function and thus self-averaging breaks down in this case. The additional details of the 
surface, which are given by increasing the number of points n, will play such a minor part 
that the percolation process, even for infinite n, will behave as if the system size was finite 
in the absence of correlation. We can also compare the result with a situation where an 
extemal field is imposed on the system giving rise to a finitecorrelation length. The genuine 
critical behaviour is then recovered for A = 1. This result is rather surprising: even in the 
thermdyqnic limit, the percolation transition on a selfafie su@ace is only critical for a 
zero roughness exponent. 

3.3. Long-range correlated surface A > 1 (r < 0) 

In order to derive (17) we made no assumption on the value of A. Thus this inequality also 
holds for negative 5 .  However, in this case we have already pointed out that the distribution 
of heights, g ( H ) ,  is now controlled by the smaller length scale of the surface, and thus  the^ 
width of the distribution scales as A". The larger the number of sites is, the wider the 
distribution g. In order to reach physical conclusions we should deal with rescaled heights 
I?{ = Hih-". It is straightforward to rewrite the recursion relation for the scaled threshold 
4 = +A-'' - 

m 
~=I"-I($) = 1 pn-l(& - hh-")f(h) dh (18') 

-m 

= d f i " - I ( & )  (1 8") 

with obvious notation. The variance of the threshold distribution U,' is to be compared with 
the variance of g, and thus we introduce 3" = LT~/A". The inequalities (17) expressed for 
& can be written 

@:-, + A-=)/b2 < 32 < + A-zn). - (19) 

?e upper bound is now finite while the lower bound is zero. The upper bound is very 
conservative and indeed, the variance of the distribution goes to zero as n tends to infinity. 

The limit disribution pm when n goes to infinity should fulfil . 

= d p m ( & )  

since A-" --f 0 as n goes to infinity. The distributions which fulfil this condition can only 
assume the values Pm = 0, pc .  or 1, the three. fixed points of rp. The instability of the 
intermediate value pc  leads to 0 or 1 as the only possible values over a non-zero interval. 
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Since P, is an increasing. function, a step (Heavyside) distribution is the only possible 
limit: P,($) = Y($ - &), as for the uncorrelated surface case. 

Since the variance ir, converges to zero for large n, this allows to change the inequality 
(19) into a genuine equality 

for large n, with a given in (10). The asymptotic behaviour of Zn will be an exponential 
of n which we write Z,, = x.p-' where the series x,, converge to a constant x,. Inserting 
this expression in (21) leads to 

To keep the series x,  bounded, p has to be smaller than or equal to A. Two cases have to 
be distinguished 

(i) 1 < A < a. In this case, p = A. Equation (22) gives 
1 

x ,  = 
J- 

and thus Zn - A-" - Lc. Using the scaling result (1 1). we can write this result in the form 
of an effective correlation length exponent, U,#: 

V,fi =-I/{. (24) 
(ii) a < A. In this case, the previous solution breaks down. Indeed, the result (p = A) 

would imply that the reduction in the width of the distribution is faster than in the absence 
of correlation. This is obviously unphysical. In fact, p is strictly smaller than A so that the 
second term of (22) vanishes in the large n limit. Therefore, p has to be equal to a. Thus, 
Z,, - a-" or 

V,ff = U (25) 

where U designates the standard percolation exponent, (10). 
Figure 3 summarizes the above results. For 5 smaller than a threshold value <* = 

- l / u  w -0.613, the correlation length exponent is identical to that of standard percolation. 
More generally, in this case, the universality class, i.e. all critical exponents are expected to 
be insensitive io the presence of correlations and they assume their usual value. For larger 
{, in contrast, the long-range correlations modify the universality class and, in particular, 
the correlation length exponent. 

We have mentioned the fact that the numerical value of critical exponents obtained on 
the hierarchical lattice were not reliable, in the sense that they could not be directly compared 
with their Euclidean counterpart. However, relations between exponents are expected to be 
preserved. Therefore, from the result obtained on the hierarchical lattice, we propose the 
following behaviour 

i f ( > O  

vefi = -l/{ if - l / v  < { < 0 (26) {: if { < - l / v  
with U equal to the standard percolation value. On the Euclidean lattice f o r d  = 2, v = 413 
and on a hierarchical lattice, U x 1.63. The u,ff value for ( > 0 is here indicated as 
conventional. We have already mentioned the fact that this case is expected to lead to 
off-critical behaviour (i.e. i t  should behave as if the system size was finite). Let us now 
confront this prediction with the numerical simulations performed on the Euclidean lattice. 



Figure 3. Evolution of l/v& as a fuction of <. Foc small < the standard percolation case 
is recovered. Above C', but for negative roughness exponents, the correlation length exponent 
depends on <. Finally, for positive <, the length exponent vanishes. No critical point is obtained 
even in the thermodynamic limit. 

4. ~Eoclidein lattice 

We now report the.result of numerical simulations in &e case of an Euclidean lattice with 
the construction of the  surface presented in section '2. We have investigated 5 exponents 
equal to -2, -1, -0.5,0,0.5,0.8 and 1. For each value of the roughness exponents we 
have generated~ 1000 independent surfaces for each size L (integer power of 2) ranging 
from %to 512. We~checked for positive values of 5 that usual techniques for measuring 
the  roughness exponent, when applied to the artificially generated surfaces, provided an 
estimate consistent with the chosen input exponent. 

4.1. Percolation threshold .~ ~. . 

The percolation threshold is defined as mentioned in section 3. Numerically, we compute it 
for each surface by monitoring the height 6 of the cutting plane. Starting from the interval 
[&,, Ha] which necessarily contains the effective threshold, we progressively reduce the 
size of the interval by a factor of 2, by checking if the surface percolates or not for a trial 
value of q4 equal to the middle of  the interval. This very simpIe procedure leads to a rapid 
convergence on the value of @c using simple tests. This dichotomy algorithm was continued 
to the desired accuracy 

Figure 4 shows examples of surfaces generated using the first technique (Euclidean 
lattice case for four values of 5 ) .  The surface is cut~exactly at the threshold height, so 
that the black area is just above the percolation threshold (it contains one path of nearest- 
neighbour sites which is entirely contained in the black part). We note that for positive 
values of 5 ahd, in particular for the case which corresponds to real cracks (5 M OX), 
the black region is very compact and contains almost no hole. The iirst generation (large- 
scale) roughness is dominant and the last generations only bring minor alterations to the 
surface. As the roughness exponent is reduced the boundary of the black regions becomes 

. .  

~. . 
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rougher and more diffuse. Finally, for 5 = -1 correlations are hardly detectable by visual 
inspection. The same set of pictures using the second procedure (suited to the hierarchical 
lattice) described in section 2 are shown in figure 5. The same features are apparent. The 
most striking difference arises from the sharp discontinuities generated along the boundaries 
of large subsquares in the case of positive 5 exponent. 

Figure 4. Four examples af the intersection of Ihe surface with a cnnstant height plane exactly 
at the percolation threshold. The four values of 5 considered ace 0.5,0, -0.5 and -1.  The 
lattice size is 512. The construction used is thal relative to Euclidenn lattices. 

The averaged percolation threshold &(L,  <) for a finite-sized system is defined as 

where L = 2". When L tends to infinity the average percolation threshold tends to the 
asymptotic percolation threshold, when this notion can be defined without ambiguity (i.e. 
for positive 5) .  Figure 6 shows &(L, 5 )  as a function of L for various 5 values. We observe 
that the threshold decreases with < and that the size effects are very weak for positive 5 .  



Percolation through self-affine surfaces 6127 

Figure 5. The same 3s figure 4 using the hierarchical laltice procedure Io generate self-affine 
surfaces. 

The variance of the distribution of threshold U’ is expected to behave as a power law 
of L with an exponent -2/uen, to be compared with the above predicted values (26). For 
positive values of <, we observe on figure 7 that the width of the distribution is nearly 
constant, in agreement with (26), or 5 = -0.5, the expected law is U a L5. The measured 
exponent is -0.3 f0.1 consistent with the predicted value. For < = -1 and -2 we expect 
to recover the standard percolation case, U cx L-3/4.  

Figure 8 shows the entice threshold distribution for a positive value of the roughness 
exponent, = 0.8, and for three system sizes, L = 8.32 and 512. We see on this graph that 
the size effect is extremely small and vanishes with L,  in agreement with the expectation. 

4.2. Incipient infinite cluster 

surfaces. In particular, the usual order parameter, defined as the probability that a site 
belongs to the infinite cluster. At the percolation threshold this is equivalent to studying 
the incipient infinite cluster. It can be seen from figures 4 and 5 that the structure of the 
infinite cluster is extremely dependent on the roughness exponent or the decay of long-range 
correlations. 

~ ~ We were also interested in other critical properties of the percolation problem on self-affine 
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FGure 6. Avenge effective threshold &(L, <) as a function of L for various < values on the 
Euclidean lattice. 
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Figure 7. Standard deviation of the effective threshold distribution as a function of L for 
various < values on the Euclidean laaice. The dam points are expected to follow asymptotically 
a power-law behaviour with an exponent - l / u e ~ .  

In standard percolation theory, the mass (i.e. number of sites) of the infinite cluster in a 
lattice of size L at the percolation threshold scales as M a LD where D = d - p/u, where 
d is the space dimension and f i  the order parameter critical exponent. In two dimensions 
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Figure 8. The enlire threshold distribution for < = 0.8 and for three system sizes, L = 8, 32 
and 512. 

/J = 5/36 or D 
We have plotted on figure 9, the density d = MIL2 of the infinite cluster as a function 

of the system size, in’ a log-log scale, for various c exponents. For positive 5 ,  the density 
approaches a constant, again consistent with the fact that the finer details do not contribute 
more than mirginally to the overall percolation properties. This is also consistent with the 
obvious guess that the clusters are compact, D = d, as can be seen, e.g., in figure 2(b). For 
< = -0.5 the density’seems to decrease slightly, with an estimate of the exponent equal 
to (/J/IJ),E Fz: 0.1 of the same order as the standard case ( / J /u )  Fz: 0.11. For smaller values 
of 5 ,  the expectation is that its v4ue  remains equal to the standard percolation value. The 
data are roughly consistent with this result although it is difficult to give a definitive answer 
due to the large fluctuations of the data. 

4.3. Discussion 

The results obtained for long-range correlations (i.e. < < 0) can be compared with recent 
numerical [Z] and analytical ~[3] results ,on correlated percolation, for which long-range 
spatial correlations are built with a different technique as: LI o( f(@)r-(d-” where d is the 
spatial dimension, r the distance and @ a tuning parameter. 

The compactness of the incipient infinite cluster is shown to increase with long-range 
correlations and the cluster to become almost identical to its backbone [2]. This conclusion 
is mainly based on the evolution- of the fractal dimension of the cluster backbone rather 
than on an evolution of the fractal dimension of the mass or density of the cluster itself. 
Indeed the size dependence of the density is shown to be quite constant for the limited range 
of correlations studied [Z] and of the order of the standard percolation with an exponent 
( P / U ) ~ ~  Fz: 0.1. That is consistent with our result for < < 0. The results we have reported 
above are in agreement with this progressive increase of the compactness of the infinite 
cluster. 

1.89. 

~ ~ 

~ 
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Figure 9. Density d of the incipient infinite cluster as a function of the system size L in log-log 
coordinates. We see that for positive < the density approaches a constmt. whereas, for negative 
<,the density vmishes with thc system size. 

The variation of the correlation length exponent 11 with the exponent f (f < 0) is 
identical to the prediction obtained through an €-expansion [3] and consistent with the 
numerical results reported in [Z]. Indeed both studies predict the same variation of U = l/f 
for < above a critical value <*, with f *  % -3 f4 in [Z] close to the critical value obtained 
in that study from the Euclidean lattice, i.e. <* = 3/4. That variation of U leads to a 
singularity as f -+ 0 which is clearly observed p.31 and consistent with both our analytical 
and numerical results. 

5. Application to mercury porosimetry 

One of the most striking applications of percolation theory is to model the very slow drainage 
of a porous medium. In this case, where the capillary forces are dominant, the domain 
which is invaded by a non-wetting fluid being very slowly injected, can be compared with 
the infinite cluster connected to the injection side [12]. This is the origin of one algorithm 
known as the ‘invasion percolation’ which can be used to identify the infinite cluster without 
having to compute the threshold explicitly. 

The justification of the model is as follows. With a given injection pressure p (and 
assuming that the pressure in the porous medium is zero), the meniscus of the non-wetting 
fluid will assume a curvature proportional to p .  Thus pores the size of which is larger than 
this radius of curvature will be invaded provided they can be reached by the fluid. Smaller 
pores will be able to prevent the fluid from penetrating because of the high value of the 
capillary pressure. In a quasistatic invasion, with a constant flux, the fluid will invade the 
largest pore available along the interface. 
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The key point is the constraint that a site should be connected to the injection border by 
a continuous path of invaded pores in order to be invaded. Indeed if this constraint could 
be forgotten, then the invaded volume under a given pressure would genuinely give the 
cumulative pore volume of successive decreasing pore sizes. This is the important piece of 
information which is looked for when mercury invasion is used as.a porosimetry analysing 
tool. 

However, one can easily be con<iced that.the accessibility contraint is not always 
innocuous. Indeed, at the very beginning of the invasion, very few pores are accessible and 
thus the invaded volume is not representative of the set of pores in a given size class. At 
the end of the process on the contrary, most resistant sites will be located on the boundary 
of invaded regions and thus the invaded volume can be considered as reliable information. 
One can proceed more quantitatively along those lines so as to establish that once the 
invaded cluster spans the medium (‘breakthrough’ pressure), one can assume that most 
pores are accessible. Therefore, by recording the pressure-volume (p-v) characteristic, 
one can directly read the pore-size distribution, the volume of pores in a given size range. 
This principle is the basis of the widely used technique known as ‘mercury porosimetry’ to 
measure the pore-size distribution of a porous medium. 

We mentioned in the introduction that the surface of cracks is self-affine, with a 
roughness exponent 5 close to 0.85. We have just seen that the percolation properties 
of such correlated surfaces were drastically different from those of usual percolation. Thus 
a natural point to explore is the consequences of this fact on the applicability of a mercury 
porosimetry measurement applied to a particular porous medium, an open crack. 

What has been called ~a height up to this point throughout the paper is now to be 
considered as the aperture of the crack. The threshold level, q4, is the minimum aperture 
that can be invaded for a given pressure. 

In particular, for a given pressure, one can compare the real~invaded volume Vi, with 
the total volume, V,, that would be invaded if all sites were connected to @e inlet. Vi is 
the experimentally accessible measurement and V, is the ideal information one would like 
to retrieve. ~. 

V, = im Hg(H)dH. (28) 

We also introduce the total volume, V, = Va(+ = 0). 
If no correlations are present, below the breaktbrough pressure, the ratio U = K/V, 

tends to zero for a system of infinite size. Above.the bredduough pressure this ratio 
approaches one for very small threshold aperture q4, or a very large pressure. In order to 
use the measurement, one implicitly assumes that v = 1 and thus only pressures above the 
breakthrough pressure can be exploited. 

We have computed the average value of the ratio v as a function of Val& for some 
values of 5. The results are shown on figure 10. It shows a marked difference between self- 
affine and uncorrelated surfaces. Even for a very low pressure, i.e. from the very beginning 
of the injection, the ratio U is far from being zero. Therefore, one can extract meaningful 
(although underestimated) information even before the breakthrough pressure, in marked 
 contrast^ with the uncorrelated-case. On the other hand, the ratio approaches one  very 
slowly,~and thus the distribution may be less precisely measured than in the uncorrelated 
case just above the breakthrough point. We also note that as 5 is progressively decreased, 
the evolution of the ratio U with the accessible volume approaches the standard percolation 
case, expected to be achieved for 5 c -l/v. 



6132 J Schmirtbuhl et a1 

1 .o 

0.0 
0.0 0.5 1 .o 

V Y ,  

Figure 10. Relative invaded volume compared with the accessible one v = Vi/V,. as a function 
of V,/Vp,. We see amarked difference of behaviour between positive and negative < exponents. 

This observation is consistent with the previous discussion on percolation behaviour. For 
self-affine surfaces the breakthrough point is not a sharp transition and at this point a large 
volume has already been invaded. The interface with the rest of the system is nevertheless 
rather limited and thus the accessibility constraint never disappears completely. In contrast, 
for uncorrelated surfaces, at the breakthrough point, a fractal (ramified) cluster has been 
invaded with a vanishing volume and thus v is equal to zero for a system of infinite size. 
However, even if the invaded volume is small, it is widely spread in the system, and allows 
for a large interface with other pores, and hence this explains the sharp increase of U above 
the breakthrough pressure. It should also be noted that the very concept of the pore-size 
distribution has only a limited interest in the case of a long-range correlated surface, if 
correlations are not studied independently. In particular the connection with permeability 
is not direct and the scaling properties of the latter have to be independently determined 
(average value and fluctuations). 

6. Conclusion 

We have investigated the percolation behaviour both for a hierarchical network, using an 
analytic approach, and for a Euclidean lattice, through numerical simulations. Our main 
conclusion is that for self-affine surfaces (< > 0). the percolation process does not show a 
genuine phase transition but rather behaves &'a finitesize system, or as if an external field 
was imposed. For a long-range correlated surface with an exponent larger than < - l /u,  
then the percolation transition is well behaved, but it belongs to a different universality 
class from that for standard percolation, with critical exponents varying continuously with 
<. Finally, when the exponent < is smaller than l/v, the standard percolation problem is 
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recovered, and correlations do not change the universality class of the problem. Numerical 
simulations support this picture in two dimensions. 

Finally, the applicability of mercury porosimetry has been investigated and was shown 
to lead to more reliable behaviour for low pressures and to a very slow 'convergence for 
large pressures. Experimental investigations of the latter process are clearly of interest. 
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